Source code for slickml.visualization._selection

from typing import Any, Dict, Optional, Tuple, Union

import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from matplotlib.figure import Figure

from slickml.utils import check_var

sns.set_style("ticks")
mpl.rcParams["axes.linewidth"] = 2
mpl.rcParams["lines.linewidth"] = 2


# TODO(amir): take out the bar chart function into `_base.py` plotting
# technically, this is the same as `plot_xgb_feature_importance()`
# and call it for feature frequency and feature importance
[docs] def plot_xfs_feature_frequency( freq: pd.DataFrame, *, figsize: Optional[Tuple[Union[int, float], Union[int, float]]] = (8, 4), show_freq_pct: Optional[bool] = True, color: Optional[str] = "#87CEEB", marker: Optional[str] = "o", markersize: Optional[Union[int, float]] = 10, markeredgecolor: Optional[str] = "#1F77B4", markerfacecolor: Optional[str] = "#1F77B4", markeredgewidth: Optional[Union[int, float]] = 1, fontsize: Optional[Union[int, float]] = 12, save_path: Optional[str] = None, display_plot: Optional[bool] = True, return_fig: Optional[bool] = False, ) -> Optional[Figure]: """Visualizes the selected features frequency as a bar chart. Notes ----- This plotting function can be used along with ``feature_frequency_`` attribute of any frequency-based feature selection algorithm such as ``XGBoostFeatureSelector``. Parameters ---------- feature importance : pd.DataFrame Feature importance (``feature_frequency_`` attribute) figsize : tuple, optional Figure size, by default (8, 4) show_freq_pct : bool, optional Whether to show the features frequency in percent, by default True color : str, optional Color of the horizontal lines of lollipops, by default "#87CEEB" marker : str, optional Marker style of the lollipops. More valid marker styles can be found at [markers-api]_, by default "o" markersize : Union[int, float], optional Markersize, by default 10 markeredgecolor : str, optional Marker edge color, by default "#1F77B4" markerfacecolor : str, optional Marker face color, by defualt "#1F77B4" markeredgewidth : Union[int, float], optional Marker edge width, by default 1 fontsize : Union[int, float], optional Fontsize for xlabel and ylabel, and ticks parameters, by default 12 save_path : str, optional The full or relative path to save the plot including the image format such as "myplot.png" or "../../myplot.pdf", by default None display_plot : bool, optional Whether to show the plot, by default True return_fig : bool, optional Whether to return figure object, by default False See Also -------- :class:`slickml.selection.XGBoostFeatureSelector` References ---------- .. [markers-api] https://matplotlib.org/stable/api/markers_api.html Returns ------- Figure, optional """ check_var( figsize, var_name="figsize", dtypes=tuple, ) check_var( show_freq_pct, var_name="show_freq_pct", dtypes=bool, ) check_var( color, var_name="color", dtypes=str, ) check_var( marker, var_name="marker", dtypes=str, ) check_var( markersize, var_name="markersize", dtypes=(float, int), ) check_var( markeredgecolor, var_name="markeredgecolor", dtypes=str, ) check_var( markerfacecolor, var_name="markerfacecolor", dtypes=str, ) check_var( markeredgewidth, var_name="markeredgewidth", dtypes=(int, float), ) check_var( fontsize, var_name="fontsize", dtypes=(int, float), ) check_var( display_plot, var_name="display_plot", dtypes=bool, ) check_var( return_fig, var_name="return_fig", dtypes=bool, ) # choose whether the feature frequency is being plotted by count or percentage if show_freq_pct: col = "Frequency (%)" else: col = "Frequency" # reindex freq freq = freq.reindex( index=range(len(freq) - 1, -1, -1), ) fig, ax = plt.subplots(figsize=figsize) # TODO(amir): add vline option too ? ax.hlines( y=freq["Feature"], xmin=0, xmax=freq[col], color=color, ) ax.plot( freq[col], freq["Feature"].values, marker, markersize=markersize, markeredgecolor=markeredgecolor, markerfacecolor=markerfacecolor, markeredgewidth=markeredgewidth, ) ax.set_xlabel( f"{col}", fontsize=fontsize, ) ax.set_ylabel( "Feature", fontsize=fontsize, ) ax.set_title( "Selected Features Frequency", fontsize=fontsize, ) ax.tick_params( axis="both", which="major", labelsize=fontsize, ) if save_path: plt.savefig( save_path, bbox_inches="tight", dpi=200, ) if display_plot: plt.show() if return_fig: return fig return None
[docs] def plot_xfs_cv_results( *, figsize: Optional[Tuple[Union[int, float], Union[int, float]]] = (10, 8), internalcvcolor: Optional[str] = "#4169E1", externalcvcolor: Optional[str] = "#8A2BE2", sharex: Optional[bool] = False, sharey: Optional[bool] = False, save_path: Optional[str] = None, display_plot: Optional[bool] = True, return_fig: Optional[bool] = False, **kwargs: Dict[str, Any], ) -> Optional[Figure]: """Visualizies the cross-validation results of ``XGBoostFeatureSelector``. Notes ----- It visualizes the internal and external cross-validiation performance during the selection process. The `internal` refers to the performance of the train/test folds during the ``xgboost.cv()`` using ``metrics`` rounds to help the best number of boosting round while the `external` refers to the performance of ``xgboost.train()`` based on watchlist using ``eval_metric``. Additionally, `sns.distplot` previously was used which is now deprecated. More details in [seaborn-distplot-deprecation]_. Parameters ---------- figsize : tuple, optional Figure size, by default (10, 8) internalcvcolor : str, optional Color of the histograms for internal cv results, by default "#4169E1" externalcvcolor : str, optional Color of the histograms for external cv results, by default "#8A2BE2" sharex : bool, optional Whether to share "X" axis for each column of subplots, by default False sharey : bool, optional Whether to share "Y" axis for each row of subplots, by default False save_path : str, optional The full or relative path to save the plot including the image format such as "myplot.png" or "../../myplot.pdf", by default None display_plot : bool, optional Whether to show the plot, by default True return_fig : bool, optional Whether to return figure object, by default False kwargs : Dict[str, Any] Required plooting elements (``plotting_cv_`` attribute of ``XGBoostFeatureSelector``) See Also -------- :class:`slickml.selection.XGBoostFeatureSelector` Refereces --------- .. [seaborn-distplot-deprecation] https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 Returns ------- Figure, optional """ check_var( figsize, var_name="figsize", dtypes=tuple, ) check_var( internalcvcolor, var_name="internalcvcolor", dtypes=str, ) check_var( externalcvcolor, var_name="externalcvcolor", dtypes=str, ) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots( nrows=2, ncols=2, figsize=figsize, sharex=sharex, sharey=sharey, ) sns.histplot( data=kwargs["int_cv_train"], color=internalcvcolor, ax=ax1, stat="density", kde=True, kde_kws={ "cut": 3, }, alpha=0.4, edgecolor=(1, 1, 1, 0.4), ) sns.histplot( data=kwargs["int_cv_test"], color=internalcvcolor, ax=ax2, stat="density", kde=True, kde_kws={ "cut": 3, }, alpha=0.4, edgecolor=(1, 1, 1, 0.4), ) sns.histplot( data=kwargs["ext_cv_train"], color=externalcvcolor, ax=ax3, stat="density", kde=True, kde_kws={ "cut": 3, }, alpha=0.4, edgecolor=(1, 1, 1, 0.4), ) sns.histplot( data=kwargs["ext_cv_test"], color=externalcvcolor, ax=ax4, stat="density", kde=True, kde_kws={ "cut": 3, }, alpha=0.4, edgecolor=(1, 1, 1, 0.4), ) ax1.set( title=f"Internal {kwargs['n_splits']}-Folds CV {kwargs['metric']} - Train", ) ax2.set( title=f"Internal {kwargs['n_splits']}-Folds CV {kwargs['metric']} - Test", ) ax3.set( title=f"External {kwargs['n_splits']}-Folds CV {kwargs['eval_metric']} - Train", ) ax4.set( title=f"External {kwargs['n_splits']}-Folds CV {kwargs['eval_metric']} - Test", ) if save_path: plt.savefig( save_path, bbox_inches="tight", dpi=200, ) if display_plot: plt.show() if return_fig: return fig return None