Source code for slickml.visualization._xgboost

from typing import Optional, Tuple, Union

import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from matplotlib.figure import Figure

from slickml.utils import check_var

# TODO(amir): this options should be set globally too
sns.set_style("ticks")
mpl.rcParams["axes.linewidth"] = 2
mpl.rcParams["lines.linewidth"] = 2


# TODO(amir): we can prolly take out the `bar_plot()` into a general pattern
# as part of base-viz functions and just call it; the same pattern gets repeated in glmnet
# or any time we wanna have a horizontal/vertical bar chart
# TODO(amir): for now we ship this; but we gotta come back to this when the main refactor is done
# TODO(amir): add the functionality for vertical plot as well
[docs] def plot_xgb_feature_importance( feature_importance: pd.DataFrame, *, figsize: Optional[Tuple[Union[int, float], Union[int, float]]] = (8, 5), color: Optional[str] = "#87CEEB", marker: Optional[str] = "o", markersize: Optional[Union[int, float]] = 10, markeredgecolor: Optional[str] = "#1F77B4", markerfacecolor: Optional[str] = "#1F77B4", markeredgewidth: Optional[Union[int, float]] = 1, fontsize: Optional[Union[int, float]] = 12, save_path: Optional[str] = None, display_plot: Optional[bool] = True, return_fig: Optional[bool] = False, ) -> Optional[Figure]: """Visualizes the XGBoost feature importance as a bar chart. Notes ----- This plotting function can be used along with ``feature_importance_`` attribute of any of ``XGBoostClassifier``, ``XGBoostCVClassifier``, ``XGBoostRegressor``, or ``XGBoostCVRegressor`` classes. Parameters ---------- feature importance : pd.DataFrame Feature importance (``feature_importance_`` attribute) figsize : tuple, optional Figure size, by default (8, 5) color : str, optional Color of the horizontal lines of lollipops, by default "#87CEEB" marker : str, optional Marker style of the lollipops. More valid marker styles can be found at [markers-api]_, by default "o" markersize : Union[int, float], optional Markersize, by default 10 markeredgecolor : str, optional Marker edge color, by default "#1F77B4" markerfacecolor : str, optional Marker face color, by defualt "#1F77B4" markeredgewidth : Union[int, float], optional Marker edge width, by default 1 fontsize : Union[int, float], optional Fontsize for xlabel and ylabel, and ticks parameters, by default 12 save_path : str, optional The full or relative path to save the plot including the image format such as "myplot.png" or "../../myplot.pdf", by default None display_plot : bool, optional Whether to show the plot, by default True return_fig : bool, optional Whether to return figure object, by default False See Also -------- :class:`slickml.classification.XGBoostClassifier` :class:`slickml.classification.XGBoostCVClassifier` :class:`slickml.regression.XGBoostRegressor` :class:`slickml.regression.XGBoostCVRegressor` References ---------- .. [markers-api] https://matplotlib.org/stable/api/markers_api.html Returns ------- Figure, optional """ check_var( figsize, var_name="figsize", dtypes=tuple, ) check_var( color, var_name="color", dtypes=str, ) check_var( marker, var_name="marker", dtypes=str, ) check_var( markersize, var_name="markersize", dtypes=(float, int), ) check_var( markeredgecolor, var_name="markeredgecolor", dtypes=str, ) check_var( markerfacecolor, var_name="markerfacecolor", dtypes=str, ) check_var( markeredgewidth, var_name="markeredgewidth", dtypes=(int, float), ) check_var( fontsize, var_name="fontsize", dtypes=(int, float), ) check_var( display_plot, var_name="display_plot", dtypes=bool, ) check_var( return_fig, var_name="return_fig", dtypes=bool, ) if save_path: check_var( save_path, var_name="save_path", dtypes=str, ) # TODO(amir): take this out into a utility functions # prep feature importance cols = feature_importance.columns.tolist() coly, colx = cols[0], cols[1] feature_importance = feature_importance.reindex( index=range(len(feature_importance) - 1, -1, -1), ) fig, ax = plt.subplots( figsize=figsize, ) ax.hlines( y=feature_importance[coly], xmin=0, xmax=feature_importance[colx], color=color, ) ax.plot( feature_importance[colx], feature_importance[coly].values, marker, markersize=markersize, markeredgecolor=markeredgecolor, markerfacecolor=markerfacecolor, markeredgewidth=markeredgewidth, ) # find max value, and put importance values on the plot max_val = feature_importance[colx].max() for index, value in enumerate(feature_importance[colx]): ax.text( value + 0.05 * max_val, index * 1.01, f"{value:.2f}", ) ax.set_xlabel( f"{' '.join(colx.split('_')).title()}", fontsize=fontsize, ) ax.set_ylabel( f"{coly.title()}", fontsize=fontsize, ) ax.set_title( "Feature Importance", fontsize=fontsize, ) ax.set( xlim=[ None, feature_importance[colx].max() * 1.13, ], ) ax.tick_params( axis="both", which="major", labelsize=fontsize, ) if save_path: plt.savefig( save_path, bbox_inches="tight", dpi=200, ) if display_plot: plt.show() if return_fig: return fig return None
[docs] def plot_xgb_cv_results( cv_results: pd.DataFrame, *, figsize: Optional[Tuple[Union[int, float], Union[int, float]]] = (8, 5), linestyle: Optional[str] = "--", train_label: Optional[str] = "Train", test_label: Optional[str] = "Test", train_color: Optional[str] = "navy", train_std_color: Optional[str] = "#B3C3F3", test_color: Optional[str] = "purple", test_std_color: Optional[str] = "#D0AAF3", save_path: Optional[str] = None, display_plot: Optional[bool] = False, return_fig: Optional[bool] = False, ) -> Optional[Figure]: """Visualizes the cv_results of ``XGBoostCVClassifier``. Parameters ---------- cv_results : pd.DataFrame Cross-validation results figsize : Tuple[Union[int, float], Union[int, float]], optional Figure size, by default (8, 5) linestyle : str, optional Style of lines [linestyles-api]_, by default "--" train_label : str, optional Label in the figure legend for the train line, by default "Train" test_label : str, optional Label in the figure legend for the test line, by default "Test" train_color : str, optional Color of the training line, by default "navy" train_std_color : str, optional Color of the edge color of the training std bars, by default "#B3C3F3" test_color : str, optional Color of the testing line, by default "purple" test_std_color : str, optional Color of the edge color of the testing std bars, by default "#D0AAF3" save_path : str, optional The full or relative path to save the plot including the image format such as "myplot.png" or "../../myplot.pdf", by default None display_plot : bool, optional Whether to show the plot, by default False return_fig : bool, optional Whether to return figure object, by default False See Also -------- :class:`slickml.classification.XGBoostCVClassifier` References ---------- .. [linestyles-api] https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html Returns ------- Figure, optional """ check_var( figsize, var_name="figsize", dtypes=tuple, ) check_var( linestyle, var_name="linestyle", dtypes=str, ) check_var( train_label, var_name="train_label", dtypes=str, ) check_var( test_label, var_name="test_label", dtypes=str, ) check_var( train_color, var_name="train_color", dtypes=str, ) check_var( train_std_color, var_name="train_std_color", dtypes=str, ) check_var( test_color, var_name="test_color", dtypes=str, ) check_var( test_std_color, var_name="test_std_color", dtypes=str, ) if save_path: check_var( save_path, var_name="save_path", dtypes=str, ) # TODO(amir): optimize this part # update metrics capitalizations for title/labels metric = cv_results.columns.tolist()[0].split("-")[1] metrics = [ "AUC", "AUCPR", "Error", "LogLoss", "MAE", "RMSE", "RMSLE", ] for m in metrics: if m.lower() == metric: metric = m fig, ax = plt.subplots( figsize=figsize, ) ax.errorbar( x=range(cv_results.shape[0]), y=cv_results.iloc[:, 0], yerr=cv_results.iloc[:, 1], fmt=linestyle, ecolor=train_std_color, c=train_color, label=train_label, ) ax.errorbar( x=range(cv_results.shape[0]), y=cv_results.iloc[:, 2], yerr=cv_results.iloc[:, 3], fmt=linestyle, ecolor=test_std_color, c=test_color, label=test_label, ) ax.set_xlabel( "# of Boosting Rounds", fontsize=12, ) ax.set_ylabel( f"""{metric}""", fontsize=12, ) ax.set_title( f"""{metric} Evolution vs Boosting Rounds""", fontsize=12, ) ax.tick_params( axis="both", which="major", labelsize=12, ) ax.legend( loc=0, prop={ "size": 12, }, framealpha=0.0, ) if save_path: plt.savefig( save_path, bbox_inches="tight", dpi=200, ) if display_plot: plt.show() if return_fig: return fig return None